
Supplementary Material

A. 3D Open-vocabulary Segmentation

2D Open-vocabulary Segmentation. Inspired by prior
successful works [7], we innovatively introduce the inte-
gration of 2D open-vocabulary detector models, such as
Grounding DINO [6], promptable 2D segmentation models,
such as SAM [4], image tagging models like RAM [12].
The integrated 2D open-vocabulary model can automati-
cally segment objects within images without the need for
any textual input.

Specifically, given an input image, we first employ an
image tagging model, RAM [12] to get the tags of the im-
age. Then, given the tags, we employ Grounding DINO [6]
to generate precise boxes for objects or regions within the
image by leveraging the textual information in tags as con-
dition. Subsequently, the annotated boxes obtained through
Grounding DINO serve as the box prompts for SAM to gen-
erate precise mask annotations. By leveraging the capabil-
ities of these robust expert models, our method enables the
automatic labeling of an entire image.

3D Open-vocabulary Segmentation. After 2D open-
vocabulary segmentation, the segmented images contain
rich semantic features for every object in the 3D scene. We
effectively lift these 2D masks to segment anything in the
3D scene via radiance fields rendering.

Given a pre-trained 3D scene, inspired by recent
works [10, 13], we preserve all attributes of the Gaussians,
but add a semantic attribute to integrate semantic informa-
tion for each Gaussian. Then, to assign each 2D mask a
unique ID in the 3D scene, we need to associate the masks
of the same identity across different views. We employ a
well-trained zero-shot tracker [1] to propagate and associate
these masks.

In addition to the existing Gaussian properties, we intro-
duce a new parameter, semantic attribute, to each Gaussian.
The semantic attribute is a learnable and compact vector,
which is used to distinguish semantic categories in whole
3D scene. To optimize the introduced attribute of each
Gaussian, we render semantic attribute into 2D images in
a differentiable manner as:

S =
∑
p∈N

ypαp

p−1∏
j=1

(1− αj) , (1)

where Sk represents the 2D semantic labels of pixel k,
derived from Gaussian point semantic attributes via α-
blending. Here, yp denotes the semantic attribute of the 3D
Gaussian point p, and αp is the influence factor of this point
in rendering pixels. After associating 2D instance labels
across each training view, we apply the grouping loss [10]
and 3D Gaussian reconstruction loss [3] to supervise the
optimization progress.

Extracting objects from 3DGS introduces holes, which
we inpaint using LaMa [8]. This inpainting ensures more
natural results when objects undergo displacement due to
external forces. The whole pipeline of 3D open-vocabulary
segmentation is shown in Fig. 1.

B. Implementation Details for Baselines
In this section, we elaborate on the implementation de-

tails of baselines used for comparison to our proposed
method. For PhysDreamer [11], we used the pre-trained
models provided in the official code repository1, as the
training code is not made available. For Physics3D [5], we
train the models using the code from official code reposi-
tory2. For DreamPhysics [2], we train the models using the
code from official code repository3. All other hyperparam-
eters remain unchanged. The trained models are then used
for qualitative evaluation.

C. User Study
We use Tencent Survey4 to recruit participants for the hu-

man preference evaluation. The survey is fully anonymized.
For each scenario, we provided video clips and asked the
participants to give each video a score. A total of 41 vol-
unteers participated in the study, including 3 professionals
from the 3D art industry.

D. Video Visualization
We provide generated videos in the project page5 for a

better motion visualization. We also show the simulated
interactive motion in Fig. 2.

1https://github.com/a1600012888/PhysDreamer
2https://github.com/liuff19/Physics3D
3https://github.com/tyhuang0428/DreamPhysics
4https://wj.qq.com/index.html
5https://sim-gs.github.io/
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Figure 1. The whole pipeline for 3D Open-vocabulary Segmentation.

E. More Analysis about Material Property Dis-
tribution Prediction

In our paper, we train an MPDP model using part of the
data from Physics3D [5]. However, with the advancement
of 3D content creation networks, such as LGM [9], we can
generate diverse objects through these methods and utilize
Physics3D for m material property distribution prediction
to create additional training data. This approach has the
potential to further enhance the performance of our model
and represents a direction for our future work.

F. More Details about Material Point Method
(MPM)

The Material Point Method (MPM) is an advanced nu-
merical technique for simulating the behavior of continuum
materials. It discretizes a material body into material points,
commonly referred to as particles, which carry essential
properties such as mass, velocity, deformation gradient, and
stress. These particles interact with a background computa-
tional grid, which facilitates spatial derivative calculations
and the application of external forces.

MPM consists of two primary phases: 1) Particle-to-Grid
(P2G) Transfer: Particles transfer their properties to the
grid, enabling the computation of global quantities such as
forces and accelerations. 2) Grid-to-Particle (G2P) Trans-
fer: Updated grid values, such as velocities and positions,
are mapped back to the particles, ensuring their motion
aligns with the computed dynamics.

This dual transfer mechanism allows MPM to efficiently
handle large deformations and complex interactions in con-
tinuum materials.
Particle-to-Grid (P2G) Transfer. During this phase, the
particles’ properties, such as mass and momentum, are
mapped to the computational grid using interpolation func-
tions. The mass at a grid node i is computed as:

mn
i =

∑
p

wn
ipmp,

where mp is the mass of particle p, and wn
ip is the interpola-

tion weight (often derived from a B-spline kernel) between
particle p and grid node i. The momentum at the grid node
is similarly updated:

mn
i v

n
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(
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p +Cn

p (xi − xn
p )
)
,

where vn
p is the velocity of particle p, Cn

p represents the
affine velocity field gradient, and xi and xn

p are the positions
of the grid node and particle, respectively.
Grid Update. Once particle properties are transferred, grid
velocities are updated by accounting for external forces, in-
ternal stresses, and gravity. The velocity at grid node i is
computed as:

vn+1
i = vn

i − ∆t

mn
i

∑
p

τn
p∇wn

ipV
0
p +∆tg,

where ∆t is the time step, τn
p is the stress tensor of the

particle p, V 0
p is the initial volume of the particle, and g is

the acceleration due to gravity.
Grid-to-Particle (G2P) Transfer. After the grid is up-
dated, the changes in velocity and momentum are trans-
ferred back to the particles. The particle velocity is updated
using the grid velocities and interpolation weights:

vn+1
p =

∑
i

vn+1
i wn

ip,

and the new position of the particle is given by:

xn+1
p = xn

p +∆tvn+1
p .

Additionally, the affine velocity field gradient Cn+1
p and de-

formation gradient Fn+1
p are updated as:
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p )Fn
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Figure 2. More visual results of our method.

The Material Point Method effectively combines La-
grangian (particle-based) and Eulerian (grid-based) ap-
proaches, making it highly suitable for simulating materials

that experience large deformations, fractures, and complex
interactions.



G. Ethical Statement
We confirm that all data used in this study were obtained

and utilized in compliance with ethical standards. All par-
ticipants provided consent, or the data were sourced from
publicly available datasets with proper permissions. The
use and publication of these data and models pose no soci-
etal or ethical harm. Necessary precautions were taken to
respect individual rights, including privacy and ethical re-
search principles.
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